Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Toxins (Basel) ; 16(4)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38668604

Fumonisin B1, T-2 toxin, and deoxynivalenol are frequently detected in feed materials. The mycotoxins induce free radical formation and, thereby, lipid peroxidation. The effects of mycotoxin exposure at the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON = 3AcDON/15-AScDON: 5 mg/kg; fumonisin B1: 20 mg/kg) and double dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg, and FB1: 40 mg/kg feed) were investigated during short-term (3 days) per os exposure in the liver of laying hens. On day 1 higher while on day 3 lower MDA concentrations were found in the low-dose group compared to the control. Fatty acid composition also changed: the proportion of monounsaturated fatty acids increased (p < 0.05) and the proportion of polyunsaturated fatty acids decreased by day 3. These alterations resulted in a decrease in the index of unsaturation and average fatty acid chain length. Histopathological alterations suggested that the incidence and severity of liver lesions were higher in the mycotoxin-treated laying hens, and the symptoms correlated with the fatty acid profile of total phospholipids. Overall, the findings revealed that mycotoxin exposure, even at the EU-recommended limits, induced lipid peroxidation in the liver, which led to changes in fatty acid composition, matched with tissue damage.


Chickens , Fatty Acids , Fusarium , Lipid Peroxidation , Liver , Mycotoxins , Animals , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Female , Mycotoxins/toxicity , Animal Feed/analysis , Antioxidants/metabolism
2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article En | MEDLINE | ID: mdl-37958678

Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.


Fatty Acids , Membrane Lipids , Fatty Acids/metabolism , Membrane Lipids/metabolism , Cell Membrane/metabolism , Membrane Fluidity , Eukaryota/metabolism , Phospholipids/metabolism
3.
Aquac Nutr ; 2023: 6080387, 2023.
Article En | MEDLINE | ID: mdl-37674976

A 25-week experiment was undertaken to explore the effect of partial replacement of dietary fishmeal (FM) with black soldier fly meal (Hermetia illucens) (BS), mealworm meal (Tenebrio molitor) (MW), and a 1 : 1 mixture of both insect meals (BSMW) on fillet quality in African catfish (Clarias gariepinus). A total of 96 fish with an average initial body weight of 248 ± 28 g were stocked into a recirculating aquaculture system and fed in four different dietary groups (control, BS, MW, and BSMW). No mortality was recorded in any of the groups. At the end of the feeding period, 24 fish (n = 6 for each treatment, weight between 690 and 822 g) were used for analysis. There was no alteration in filleting yield or other slaughter indices within experimental groups, except the hepatosomatic index. Among quality attributes, pH 24 hr postmortem exhibited a significant difference (p < 0.05). In respect of the fatty acid profile, the n-6/n-3 ratio ranged between 1.17 and 1.40 but was not significantly modified by the partial replacement of FM. Similarly, the proximate composition of the fillets was not significantly different between the control and experimental diet groups. The ratio of polyunsaturated fatty acid to saturated fatty acids ranged between 0.67 and 0.79 in the fillets, without significant differences between groups. The atherogenic index was increased in the BS group, as compared to the others; however, the thrombogenicity index of fillets was not significantly affected. Similarly, the conventional quality traits of the fillet, such as cooking, drip, and thawing losses, did not differ within treatments. This study demonstrates that the dietary inclusion of black soldier fly and/or mealworm meals used for African catfish at the tested inclusion level has negligible impact on fillet properties.

4.
Toxins (Basel) ; 15(5)2023 05 11.
Article En | MEDLINE | ID: mdl-37235363

This study investigated effects of dietary fumonisins (FBs) on gut and faecal microbiota of weaned pigs. In total, 18 7-week-old male pigs were fed either 0, 15 or 30 mg FBs (FB1 + FB2 + FB3)/kg diet for 21 days. The microbiota was analysed with amplicon sequencing of the 16S rRNA gene V3-V4 regions (Illumina MiSeq). Results showed no treatment effect (p > 0.05) on growth performance, serum reduced glutathione, glutathione peroxidase and malondialdehyde. FBs increased serum aspartate transaminase, gamma glutamyl-transferase and alkaline phosphatase activities. A 30 mg/kg FBs treatment shifted microbial population in the duodenum and ileum to lower levels (compared to control (p < 0.05)) of the families Campylobacteraceae and Clostridiaceae, respectively, as well as the genera Alloprevotella, Campylobacter and Lachnospiraceae Incertae Sedis (duodenum), Turicibacter (jejunum), and Clostridium sensu stricto 1 (ileum). Faecal microbiota had higher levels of the Erysipelotrichaceae and Ruminococcaceae families and Solobacterium, Faecalibacterium, Anaerofilum, Ruminococcus, Subdoligranulum, Pseudobutyrivibrio, Coprococcus and Roseburia genera in the 30 mg/kg FBs compared to control and/or to the 15 mg/kg FBs diets. Lactobacillus was more abundant in the duodenum compared to faeces in all treatment groups (p < 0.01). Overall, the 30 mg/kg FBs diet altered the pig gut microbiota without suppressing animal growth performance.


Fumonisins , Microbiota , Swine , Animals , Male , Fumonisins/analysis , RNA, Ribosomal, 16S/genetics , Diet/veterinary , Feces/microbiology , Animal Feed/analysis
5.
Foods ; 11(23)2022 Dec 05.
Article En | MEDLINE | ID: mdl-36496725

The oxidation of unsaturated fatty acids and the adverse transformation of pigments from meat and spices are the primary causes of chemical degradation in processed meat products. Thymol is found in a variety of plant extracts that have been proven to effectively inhibit or slow down oxidative processes. The objective of our study was to determine whether thymol treatment of the surface of sliced paprika salami could be applied to inhibit lipid oxidation and color change during refrigerated storage. During eight weeks of storage, the malondialdehyde (MDA) levels and the ratios of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and n6/n3 in thymol-treated salami remained unchanged (p ≥ 0.05), whereas in the controls, the MDA levels increased by approximately twelvefold and the ratio of SFAs in the lipid fraction increased (p < 0.001), while the ratio of PUFAs decreased (p < 0.001). The application of thymol prevented decrease in yellowness (b*) of the slices and reduced decreases in redness (a*) and brightness (chroma).

6.
Toxins (Basel) ; 14(11)2022 11 18.
Article En | MEDLINE | ID: mdl-36422977

Male weaned piglets n = 6/group were fed Fumonisin B1+2+3 (FBs) mycotoxins at 0, 15, or 30 mg/kg diet for 3 weeks to assess the fatty acid (FA) composition of membrane lipid classes, lipid peroxidation, and histomorphological changes in the liver and lung. Growth performance and lipid peroxidation were unaltered, but histomorphological lesion scores increased in the liver. Linear dose-response was detected in liver phosphatidylcholines for C16:1n7, C18:1n9, and total monounsaturation and in lungs for C22:6n3, total n-3 and n-3:n-6, in pulmonary phosphatidylserines C20:0 and C24:0. Alterations associated with the highest FBs dose were detected in sphingomyelins (liver: total saturation ↓, total monounsaturation ↑), phosphatidylcholines (liver: total n-6 ↓, n-6:n-3 ↑; in lungs: total monounsaturation ↑, total polyunsaturation ↑), phosphatidylethanolamines (liver: total n-3 ↓; in lungs: total monounsaturation ↑ and n-6:n-3 ↑), phosphatidylserines (liver: n-6:n-3 ↑; in lungs: total saturation ↓, total polyunsatuartion ↑, and total n-6 and its ratio to n-3 ↑), and phosphatidylinositol (n-6:n-3 ↑; lungs: C22:1n9 ↑, C22:6n3 ↓, total saturation ↓, total monounsaturaion ↑). In conclusion, FBs exposures neither impaired growth nor induced substantial lipid peroxidation, but hepatotoxicity was proven with histopathological alterations at the applied exposure period and doses. FA results imply an enzymatic disturbance in FA metabolism, agreeing with earlier findings in rats.


Fumonisins , Mycotoxins , Animals , Swine , Male , Rats , Fumonisins/toxicity , Fumonisins/metabolism , Mycotoxins/metabolism , Phosphatidylserines/metabolism , Liver , Fatty Acids/metabolism , Lung/metabolism , Phosphatidylcholines/metabolism
7.
Foods ; 11(21)2022 Oct 31.
Article En | MEDLINE | ID: mdl-36360065

In this study, we aimed to carry out the efficient fortification of vanilla milkshakes with micro-encapsulated microalgae oil (brand: S17-P100) without distorting the product's odor. A 10-step oil-enrichment protocol was developed using an inclusion rate of 0.2 to 2 w/w%. Fatty acid (FA) profile analysis was performed using methyl esters with the GC-MS technique, and the recovery of docosahexaenoic acid (C22:6 n3, DHA) was robust (r = 0.97, p < 0.001). The enrichment process increased the DHA level to 412 mg/100 g. Based on this finding, a flash-GC-based electronic nose (e-nose) was used to describe the product's odor. Applying principal component (PC) analysis to the acquired sensor data revealed that for the first four PCs, only PC3 (6.5%) showed a difference between the control and the supplemented products. However, no systematic pattern of odor profiles corresponding to the percentages of supplementation was observed within the PC planes. Similarly, when discriminant factor analysis (DFA) was applied, though a classification of the control and supplemented products, we obtained a validation score of 98%, and the classification pattern of the odor profiles did not follow a systematic format. Again, when a more targeted approach such as the partial least square regression (PLSR) was used on the most dominant sensors, a weak relationship (R2 = 0.50) was observed, indicating that there was no linear combination of the qualitative sensors' signals that could accurately describe the supplemented concentration variation. It can therefore be inferred that no detectable off-odor was present as a side effect of the increase in the oil concentration. Some volatile compounds of importance in regard to the odor, such as ethylacetate, ethyl-isobutarate, pentanal and pentyl butanoate, were found in the supplemented product. Although the presence of yeasts and molds was excluded from the product, ethanol was detected in all samples, but with an intensity that was insufficient to cause an off-odor.

8.
Toxins (Basel) ; 13(7)2021 06 27.
Article En | MEDLINE | ID: mdl-34199083

At exactly the individual permitted EU-tolerance dietary limits, fumonisins (FB: 5 mg/kg diet) and mixed fusariotoxins (DZ: 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet, and FDZ: 5 mg fumonisins + 0.9 mg deoxynivalenol + 0.1 mg zearalenone/kg diet) were administered to piglets (n = 6/group) for three weeks. Bodyweights of intoxicated piglets increased, while feed conversion ratios decreased. In FDZ, both the absolute and relative weight of the liver decreased. In the renal-cellular membrane, the most pronounced alterations were in FDZ treatment, followed by individual FB exposure. In both treatments, high proportions of C20:0 and C22:0 with low fatty acid (FA) unsaturation were found. In hepatocyte phospholipids, FDZ toxins exerted antagonistic interactions, and FB had the strongest increasing effect on FA monounsaturation. Among all investigated organs, the spleen lipids were the least responsive, in which FDZ expressed synergistic reactions on C20:0 (↑ FDZ vs. FB) and C22:0 (↓ FDZ vs. DZ). The antioxidant defense of the kidney was depleted (↓ glutathione concentration by FB-exposure). Blood plasma indicated renal injury (profound increase of urea and creatinine in FB vs. DZ and FDZ). FB strongly increased total-cholesterol and low density lipoprotein concentrations, whereas FDZ synergistically increased gamma-glutamyltransferase, alkaline-phosphatase, calcium and phosphorus levels. Summarized, individual and combined multiple fusariotoxins modified the membrane lipid profile and antioxidant defense of splanchnic organs, and serum biochemicals, without retarding growth in piglets.


Food Contamination , Fumonisins/toxicity , Fusarium , Trichothecenes/toxicity , Zearalenone/toxicity , Animal Feed , Animals , Bilirubin/blood , Creatinine/analysis , European Union , Fatty Acids/metabolism , Glutathione/metabolism , Kidney/drug effects , Kidney/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Phospholipids/metabolism , Spleen/drug effects , Spleen/metabolism , Swine , Urea/blood , Weaning , gamma-Glutamyltransferase/blood
9.
Toxins (Basel) ; 13(4)2021 03 25.
Article En | MEDLINE | ID: mdl-33806221

A 65-day study was undertaken to test the effects of two doses (10 and 20 mg/kg) of dietary fumonisin Bs (FB) on the rabbit male reproduction system. Body and testicular weight was not affected by the intoxication, neither the fatty acid composition of the testicular total phospholipids; the testis histological analysis failed to reveal any toxic effect. The FBs increased the testicular concentration and activity of reduced glutathione and glutathione peroxidase and decreased initial phase lipid peroxidation (conjugated dienes and trienes) in a dose dependent manner. Sperm morphology and chromatin condensation were monitored on Feulgen-stained smears. No significant differences were observed between the treatment groups and between sampling time points. The live cell ratio in the sperm (as assessed with flow cytometry) was not different among groups at any of the five sampling timepoints and was also identical within groups. Similarly, the spermatozoa membrane lipid profile was also identical in all three groups after the total intoxication period. In summary, it was demonstrated that FBs in an unrealistic and unjustified high dose still do not exert any drastic harmful effect on the leporine, male reproduction system, meanwhile slightly augmenting testicular antioxidant response.


Dietary Exposure/adverse effects , Fumonisins/toxicity , Fusarium/metabolism , Spermatozoa/drug effects , Testis/drug effects , Animal Feed/microbiology , Animals , Dose-Response Relationship, Drug , Fatty Acids/metabolism , Food Microbiology , Fumonisins/metabolism , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phospholipids/metabolism , Rabbits , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism , Testis/pathology , Time Factors
10.
Mycotoxin Res ; 37(2): 141-148, 2021 May.
Article En | MEDLINE | ID: mdl-33665736

The heat shock protein (Hsp70) level was assessed after 14 days of oral gavage-exposure to fumonisin B1 (FB1: 150 µg/animal/day), deoxynivalenol (DON: 30 µg/animal/day) and zearalenone (ZEN: 150 µg/animal/day), alone or in combinations (in additive manner: FD = FB1 + DON, FZ = FB1 + ZEN, DZ = DON + ZEN and FDZ = FB1 + DON + ZEN) in the liver, kidneys and lung of 24 adult male Wistar rats (n = 3/group). The liver was the most responsive tissue, as compared with kidney and lung. Except of DZ-treatment, mycotoxins elevated the Hsp70 levels in livers. The highest Hsp70-levels (≈ twofold) were in the DON, FD, FZ and FDZ treatments (additive effects). In the kidney, alterations (↑ ≈ twofold) were detected in ZEN, FD, FZ and DZ treatments. The least responsive organ was the lung (↑ only in FDZ, antagonistic effect). DON and ZEA exposures have altered the reduced glutathione concentration (↓) and glutathione peroxidase activity (↓) in the blood serum. The serum malondialdehyde level increased only after exposure to FD (synergistic effect), as compared with the DZ group (antagonistic effect). When the blood clinical chemistry was assessed, significant alterations were in alanine aminotransferase (80% increase in FDZ, antagonistic effect) and total protein (↓ ZEN). Results varied according to the organ, toxin type and interactions. Furthermore, oxidative stress was not the only key player behind the Hsp70 increase, in which another mechanism is suggested.


HSP70 Heat-Shock Proteins/drug effects , Mycotoxins/toxicity , Animals , Fumonisins/toxicity , Fusarium/metabolism , HSP70 Heat-Shock Proteins/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Lung/drug effects , Lung/metabolism , Oxidative Stress , Rats , Rats, Wistar , Trichothecenes/toxicity , Zearalenone/toxicity
11.
Toxins (Basel) ; 12(5)2020 05 12.
Article En | MEDLINE | ID: mdl-32408599

Weaned piglets (n = 3 × 6) were fed 0, 15 and 30 mg/kg diet fumonisin (FB1, FB2 and FB3, i.e., FBs, a sphinganine analogue mycotoxin), from the age of 35 days for 21 days, to assess mycotoxin induced, dose-dependent changes in the red cells' membrane. Ouabain sensitive Na+/K+ ATPase activity was determined from lysed red cell membranes, membrane fatty acid (FA) profile was analysed, as well as antioxidant and lipid peroxidation endpoints. Final body weight was higher in the 30 mg/kg group (vs. control), even besides identical cumulative feed intake. After 3 weeks, there was a difference between control and the 30 mg/kg group in red cell membrane sodium pump activity; this change was dose-dependent (sig.: 0.036; R2 = 0.58). Membrane FA profile was strongly saturated with non-systematic inter-group differences; pooled data provided negative correlation with sodium pump activity (all individual membrane n6 FAs). Intracellular antioxidants (reduced glutathione and glutathione peroxidase) and lipid peroxidation indicators (conj. dienes, trienes and malondialdehyde) were non-responsive. We suppose a ceramide synthesis inhibitor (FB1) effect exerted onto the cell membrane, proven to be toxin dose-dependent and increasing sodium pump activity, with only indirect FA compositional correlations and lack of lipid peroxidation.


Erythrocyte Membrane/drug effects , Fumonisins/toxicity , Oxidative Stress/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Administration, Oral , Animals , Antioxidants/metabolism , Dose-Response Relationship, Drug , Erythrocyte Membrane/metabolism , Fatty Acids/metabolism , Fumonisins/administration & dosage , Lipid Peroxidation/drug effects , Sphingosine N-Acyltransferase/antagonists & inhibitors , Sphingosine N-Acyltransferase/metabolism , Sus scrofa , Up-Regulation
12.
Toxins (Basel) ; 11(11)2019 11 10.
Article En | MEDLINE | ID: mdl-31717687

Scarce studies have investigated the impact of fumonisin B1 (FB1) on the hepatic tissue fatty acid (FA) profile, and no study is available on piglets. A 10-day in vivo experiment was performed on seven piglets/group: control and FB1-fed animals (diet was contaminated with fungal culture: 20 mg FB1/kg diet). Independent sample t-test was carried out at p < 0.05 as the significance level. Neither growth, nor feed efficiency, was affected. The hepatic phospholipid (PL) fatty acids (FAs) were more susceptible for FB1, while triglyceride (TG) was less responsive. The impact of FB1 on hepatic PL polyunsaturated fatty acids (PUFAs) was more pronounced than on saturated fatty acids. Among all PUFAs, predominant ones in response were docosapentaenoicacid (DPA) (↓), docosahexaenoic DHA (↓) and arachidonic acids (↑). This led to a higher omega-6:omega-3 ratio, whereas a similar finding was noted in TGs. Neither total saturation (SFA) nor total monousaturation (MUFA) were affected by the FB1 administration. The liver showed an increase in malondialdehyde, as well as antioxidant capacity (reduced glutathione and glutathione peroxidase). The plasma enzymatic assessment revealed an increase in alkaline phosphatase (ALP), while alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT) were not influenced. The microscopic sections provided evidence of vacuolar degeneration of the hepatocytes' cytoplasm, but it was not severe. Furthermore, the lung edema was developed, while the kidney was not affected. In conclusion, regarding FB1-mediated hepatotoxicity in piglets, the potential effect of slight hepatotoxicity did not compromise growth performance, at least at the dose and exposure period applied.


Fatty Acids/metabolism , Fumonisins/toxicity , Liver/drug effects , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Glutathione/metabolism , Glutathione Peroxidase/metabolism , L-Lactate Dehydrogenase/blood , Liver/enzymology , Liver/metabolism , Liver/pathology , Malondialdehyde/metabolism , Swine , gamma-Glutamyltransferase/blood
13.
Article En | MEDLINE | ID: mdl-31437116

Male Wistar rats were intraperitoneally dosed with fumonisin B1 (FB1; 0, 20, 50 and 100 mg kg-1 dietary dose equivalent) for 5 & 10 days to assess dose- and time-dependent effects on renal and hepatic phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylethanolamine (PE) fatty acid (FA) profiles. Renal PC showed increasing FA saturation (SAT) after 5 days; after 10 days polyunsaturation (PUFA) decreased markedly (Σ n3 (total n3), Σ n6, PUFA, unsaturation index (UI) and average FA chain length (ACL)), mostly with linear dose response. In the PI FAs similar changes were observed, decreasing monounsaturated FA, PUFA, UI and ACL (5 & 10 days), while the PE fraction was responsive in Σ n6 (↓) and SAT (↑), but only after 5 days (without dose response for both PI & PE). Liver PC exhibited increasing saturation (C16:0), decreasing polyunsaturation (C20:3 n6 [dihomo-γ-linolenic acid, DGLA]; C20:3 n3); the PI FA profile showed similar alterations after 5 days. PC & PI FA failed to respond in a dose-dependent manner to FB1. In PE FA profile DGLA decreased, with a decrease of the total n6 FA proportion and dose-dependent increase of n3 FAs. Results revealed expressed renal sensitivity, supporting our earlier published results in terms of oxidative stress and histopathological modifications.


Diet/adverse effects , Kidney/drug effects , Liver/drug effects , Administration, Oral , Animals , Dose-Response Relationship, Drug , Fumonisins/administration & dosage , Male , Membrane Lipids , Rats , Rats, Wistar
14.
Toxins (Basel) ; 10(11)2018 Nov 09.
Article En | MEDLINE | ID: mdl-30424021

Male Wistar rats were treated intraperitoneally (i.p.) with fumonisin B1 (FB1; 0, 20, 50 and 100 mg/kg dietary dose equivalent) for 5 and 10 days (n = 24⁻24 in each setting) to gain dose- and time-dependent effects on antioxidant status and oxidative stress response, clinical chemical endpoints and liver, kidney and lung histopathology and lymphocyte damage (genotoxicity). FB1 decreased feed intake, body weight gain and absolute liver weight, irrespective of the toxin dose. Relative kidney weight increased in the 10-day setting. Linear dose response was found for plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol, urea and creatinine, and exposure time-dependence for plasma creatinine level. The latter was coupled with renal histopathological findings, tubular degeneration and necrosis and the detachment of tubular epithelial cells. The pronounced antioxidant response (reduced glutathione accretion, increasing glutathione peroxidase activity) referred to renal cortical response (5⁻10 days exposure at 50⁻100 ppm FB1). Hepatic alterations were moderate, referring to initial phase lipid peroxidation (exposure time dependent difference of conjugated diene and triene concentrations), and slight functional disturbance (↑ total cholesterol). Lymphocyte DNA damage was moderate, supporting a mild genotoxic effect of FB1.


Fumonisins/toxicity , Kidney/drug effects , Liver/drug effects , Animals , Dose-Response Relationship, Drug , Fumonisins/administration & dosage , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Injections, Intraperitoneal , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Lung/anatomy & histology , Lung/drug effects , Lung/metabolism , Male , Oxidative Stress/drug effects , Rats, Wistar , Time Factors
15.
Toxins (Basel) ; 10(1)2017 12 22.
Article En | MEDLINE | ID: mdl-29271890

(1) Background and (2) Methods: A 14-day in vivo, multitoxic (pure mycotoxins) rat experiment was conducted with zearalenone (ZEA; 15 µg/animal/day), deoxynivalenol (DON; 30 µg/animal/day) and fumonisin B1 (FB1; 150 µg/animal/day), as individual mycotoxins, binary (FD, FZ and DZ) and ternary combinations (FDZ), via gavage in 1 mL water boluses. (3) Results: Body weight was unaffected, while liver (ZEA↑ vs. DON) and kidney weight (ZEA↑ vs. FDZ) increased. Hepatocellular membrane lipid fatty acids (FAs) referred to ceramide synthesis disturbance (C20:0, C22:0), and decreased unsaturation (C22:5 n3 and unsat. index), mainly induced by DON and to a lesser extent by ZEA. The DON-FB1 interaction was additive on C20:0 in liver lipids. In renal phospholipids, ZEA had the strongest effect on the FA profile, affecting the saturated (C18:0) and many n6 FAs; ZEA was in an antagonistic relationship with FB1 (C18:0) or DON (C18:2 n6, C20:1 n9). Hepatic oxidative stress was the most expressed in FD (reduced glutathione and glutathione peroxidase), while the nephrotoxic effect was further supported by lipid peroxidation (malondialdehyde) in the DON treatment. (4) Conclusions: In vivo study results refer to multiple mycotoxin interactions on membrane FAs, antioxidants and lipid peroxidation compounds, needing further testing.


Fumonisins/toxicity , Kidney/drug effects , Liver/drug effects , Membrane Lipids/metabolism , Trichothecenes/toxicity , Zearalenone/toxicity , Animals , Fatty Acids/metabolism , Kidney/metabolism , Kidney/pathology , Liver/metabolism , Liver/pathology , Male , Organ Size/drug effects , Rats, Wistar
...